

Regioselektive Substitution an [2.2]Metacyclophanen via Chromtricarbonyl-Komplexe

Fritz Vögtle**, Jürgen Schulz* und Martin Nieger^b

Institut für Organische Chemie und Biochemie der Universität Bonn^a,

Institut für Anorganische Chemie der Universität Bonn^b, Gerhard-Domagk-Straße 1, W-5300 Bonn 1

Eingegangen am 5. Dezember 1990

Key Words: [2.2] Metacyclophanes / Chromium tricarbonyl complexes / Chirality, helical, planar

Regioselective Substitution of [2.2]Metacyclophanes via Chromium Tricarbonyl Complexes

The [2.2]metacyclophanes **6**, **8**, and **9** are regioselectively complexed with triammintricarbonylchromium. The complexes are lithiated with *n*BuLi/TMEDA at -78 °C, and the resulting aryllithium complexes are trapped with electrophiles to give new phanes exhibiting substitution patterns, which are not or more difficult available by other routes. Complex **6a** gives 5-

[2.2]Metacylophane haben sich aufgrund ihrer auch in Lösung starren Geometrie als nützlich für die Konformationsanalyse^{1a)} und das Studium helical- und planarchiraler Verbindungen^{2a,b,c)} erwiesen.

Darüber hinaus bieten sie interessante Objekte zur Untersuchung von Ringstromeffekten³), von transannularen π - π -Wcchselwirkungen⁴) und der Aromatizität nichtplanarer Benzolringe⁵).

Es gibt eine Reihe von Synthesemethoden zum Aufbau des [2.2]Metacyclophan-Skeletts⁶, aber bisher scheiterten offenbar Versuche, die gängige Aromatenchemie zu dessen Derivatisierung auszunutzen. Selbst unter milden Bedingungen ausgeführte elektrophile Substitutionen führten zum transannularen Ringschluß unter Bildung von Dihydropyrenen⁷. Die gewünschten funktionellen Gruppen müssen daher heute noch meist mit den Cyclisierungskomponenten in das Phan eingeführt werden, oder, falls sie stark

 Schema 1⁸⁾. Darstellung von [2.2]Metacyclophan-4-carbonsäureethylester (5) (zum Vergleich mit den unten angegebenen regioselektiven Substitutionsmethoden); (i) nBuLi, (ii) nBuLi, (iii) CO₂, (iv) CH₂N₂, (v) Ra-Ni

substitution almost exclusively, while the chiral complex **8a** is substituted in positions 5 and 4 in a ratio of 3:1. Steric effects, caused by the large dithiane group, seem to play a role in both complexation and derivatisation of these substrates. An X-ray crystal structure analysis of the chromium tricarbonyl phane complex **11** is performed.

basischen Reaktionsbedingungen nicht standhalten, nachträglich durch Umwandlung geeigneter funktioneller Gruppen erzeugt werden, wie Schema 1 beispielhaft illustriert.

Zur Klärung einzelner der oben angeführten Probleme wurden bereits Chromtricarbonyl-Komplexe von [2.2]Metacyclophanen dargestellt, aber anders als beim verwandten [2.2]Paracyclophan dienten sie überwiegend physikalisch-chemischen Untersuchungen^{1b,3,4}. Da Chromtricarbonyl-Komplexe seit ihrer Entdeckung 1957⁹) die Aromatenchemie in verschiedener Hinsicht bereichert haben, schien uns eine Übertragung auf regioselektive Umsetzungen an [2.2]Metacyclophanen lohnend. Auf folgende Fragen wurden Antworten gesucht:

a) Inwieweit differenziert die Chromtricarbonyl-Gruppe zwischen den beiden Benzolringen in brückensubstituierten [2.2]Metacyclophanen?

b) Lassen sich die jeweils komplexierten Benzolringe regioselektiv metallieren und elektrophil substituieren?

1. Synthesen

Als zur Komplexierung geeignete Substrate erschienen uns die bereits 1972 von Gschwend¹⁰⁾ synthetisierten Phane 6-9. Als Schlüsselschritt dient die Dithian-Methode¹¹⁾, bei der das Bis(propylendithioacetal) 1 mit 1,3-Bis(brommethyl)benzol in THF umgesetzt wird; das [2.2]Metacyclophan 6 wird mit 50% Ausbeute erhalten¹¹⁾.

Unsere Komplexierungsversuche mit Hexacarbonylchrom unter Standardbedingungen¹⁴⁾ verliefen nur mit **10** erfolgreich. Die anderen Cyclophane zeigten unter den erforderlichen energischen Bedingungen Zersetzung. Das unter milderen Bedingungen einsetzbare Triammintricarbonylchrom¹⁵⁾ führte schließlich zur erfolgreichen Komplexierung der Cyclophane **6**, **8** und **9**, während **7** auch mit diesem Überträger der Chromtricarbonyl-Gruppe keine Umsetzung erkennen ließ (vgl. Tab. 1). Die Chromtricarbonyl-Gruppe komplexiert dabei in allen Fällen ausschließlich an demjenigen Benzolring, der am benzylischen C-Atom keinen Substituenten (außer H) trägt.

Schema 2. Synthese des Dimethylacetals 9 von 1-Oxo[2.2]metacyclophan und von [2.2]Metacyclophan (10); (i) NBS/ THF/Aceton¹², (ii) McOH/H^{+ f0}, (iii + iv) Ra-Ni^{10,13}

Tab. 1. Ausbeuten an Chromtricarbonyl-Komplexen verschiedener Cyclophane

Cyclophan	Komplex	Ausbeute
6	6a	29 %
7	7a	-
8	8a	35 %
9	9a	40 %
10	10a	81 % ¹⁶⁾

Die Chromtricarbonyl-Komplexe dieser Cyclophane sind gelbe, licht- und luftempfindliche Substanzen, die als Feststoffe einige Zeit beständig sind¹⁷, sich in Lösung jedoch relativ rasch unter Bildung von Chrom(III)-oxid und Freisetzung des [2.2]Cyclophans zersetzen.

Zur Derivatisierung (vgl. Schema 3) werden die Komplexe in THF gelöst und bei -78 °C zuerst mit TMEDA, dann mit *n*BuLi versetzt, woraufhin die gelbe Lösung rotbraun wird. Die Abfangreaktion mit Elektrophilen bei -78 °C ist in wenigen Minuten beendet. Zur Dekomplexierung erwies sich die Ligandenaustauschreaktion mit Pyridin¹⁸⁾ als vorteilhafter gegenüber den oxidativen und photolytischen Methoden.

Die Wahl des Elektrophils ist entscheidend, da Aryllithium-Chromtricarbonyl-Komplexe stark basische, aber nur schwach nucleophile Intermediate sind¹⁹. Anfängliche Versuche mit Acetylchlorid und Benzylbromid führten deshalb nicht zu Umsetzungen. Erst starke Elektrophile ohne acide Protonen, wie Chlortrimethylsilan und Chlorameisensäure-ethylester, ergaben gute Ausbeuten. Diese Einschränkung kann jedoch durch Überführung der lithiierten Komplexe in ihre Cuprate aufgehoben werden, wodurch die Basizität verringert und die Nucleophilie erhöht wird¹⁹.

Es ist bekannt, daß die Chromtricarbonyl-Gruppe auf den Benzolliganden einen starken Elektronenzug ausübt, vergleichbar dem einer Nitrogruppe²⁰⁾. Die Acidität der Aren- und Benzyl-Protonen wird dabei um ca. 7 pK-Einheiten erhöht²¹⁾. Starke und harte Basen wie *n*BuLi führen bei tiefen Temperaturen zur Metallierung der Komplexe²²⁾, und anschließende elektrophile Substitution liefert aromatische Systeme mit auf anderem Weg häufig schwieriger zu erreichenden Substitutionsmustern²³⁾. In Abwesenheit dirigierender Gruppen ist die Regioselektivität jedoch gering, und Metallierung in Ring- und Benzylstellung konkurrieren miteinander²⁴⁾.

Im folgenden sei erläutert, daß sowohl in bezug auf die Komplexierung als auch auf die Derivatisierung das starre, stufenförmige Gerüst der [2.2]Metacyclophane selbst als dirigierende Gruppe angesehen werden kann: Aufgrund der besonderen Geometrie ragen die inneren Protonen 8-H und 16-H jeweils in die π -Sphäre des ihnen gegenüberliegenden Benzolrings hinein. Sie stören eine Komplexierung an den betreffenden "Innenseiten" des [2.2]-Metacyclophans. Die Dithiangruppen in 6 und 8 schirmen die "Au-Benseite" des Rings A ab (siehe Schema 3 und Abb. 1a), so daß nur noch die "Außenseite" des Rings B für eine Komplexierung in Frage kommt. Dies hat die Konsequenz, daß die Komplexierung für das chirale Phan 8 diastereoselektiv ist, denn die beiden Seiten des Benzolrings B sind diastereotop²⁵⁾.

Bemerkenswerterweise ist das Fehlen von Benzylierungsprodukten bei der Umsetzung von **6a** und **8a** in Übereinstimmung mit Ergebnissen an [2.2]Paracyclophan-Komplexen^{26]}. Aus Röntgenstruktur-Untersuchungen an diesen Cyclophanen weiß man, daß die Brücken-C-Atome mit den aromatischen C-Atomen nicht in einer Ebene liegen. Dadurch scheint die Stabilisierung einer negativen Ladung weniger gut möglich und folglich der Ringmetallierungsschritt kinetisch und thermodynamisch begünstigt.

Weiterhin fällt die hohe Regioselektivität bei der Umsetzung von 6a auf. Die Chromtricarbonyl-Gruppe schirmt die komplexierte Seite des Arenliganden vollständig ab. Angreifende Reagentien sind so gezwungen, sich von der dem Chrom-Atom abgewandten Seite zu nähern²⁷⁾. Die stufenförmige Geometrie der [2.2]Metacyclophane scheint es den großen Dithiangruppen in 6a und 8a zu ermöglichen, auch einen Teil dieser Seite abzuschirmen (vgl. Abb. 1a und 3). Somit sind in 6a die 5-Position und in 8a die 5-Position und die der Dithiangruppe abgewandte 4-Position leichter zugänglich. Als dirigierende Gruppe kann hier also das Phangerüst selbst zum Tragen kommen. Anders als im konformativ frei beweglichen 2-Phenyl-1,3-dithian können sich die Dithiangruppen in 6 und 8 nicht wegdrehen, weshalb sie die Komplexierung des benachbarten Benzolrings stärker stören.

2. Konstitutionsuntersuchungen und Röntgenstruktur von 11a

Die Brückenprotonen der hier beschriebenen [2.2]Phane bilden im ¹H-NMR-Spektrum ein AB-System. Die chemi-

Tab. 2. ¹H-NMR-Daten der achiralen Derivate von **6** (a: 400 MHz/ CDCl₃; b: 200 MHz/CD₂Cl₂; c: 200 MHz/CDCl₃); $\Delta\delta$ = chemische Verschiebungsdifferenz zwischen freien Liganden und Komplex $\Delta\delta = \delta_{Ligand} - \delta_{Komplex}$, ("s" = Pseudosinglett, "t" = Pseudotriplett)

Protonen Nr.	6° 60°	11 ^b 11a ^c	13 ^b 13a ^c		
2-H _{ax} /9-H _{ax} Δδ	d2.49 d2.17 +0.32	d2.44 d2.12 +0.32	d2.5 d2.18 +0.32		
2-H _{eq} /9-H _{eq} Δδ	d3.34 d2.99 +0.35	d3.29 d2.97 +0.32	d3.35 3.03 +0.32		
4,5,6H 4.6H	m7.24 m5.33				
4,0-11 Δð	-	+1.93	+1.71		
8-H	's'4.01 's'2.16	's'4.0 's'2.37	's'4.12 's'2.4		
16-H	t6.68 t7.44	t6.56 's'7.37	t6.63 's'7.4		
Δ δ	-0.76	-0.81	-0.81		
12,14-H	dd8.12 dd8.09	dd8.07dd8.1	dd8.11 dd8.14		
13–H	t7.58 t7.64	t7.54 t7.63	t7.6 t7.66		
SiMez		s0.29 s0.33			
OCH2			q4.32 q4.36		
CH ₃			t1.37 t1.37		

Tab. 3. ¹H-NMR-Daten der chiralen Derivate von 8 (Komplexe in CDCl₃, freie Liganden in CD₂Cl₂; 200 MHz); die Signale von 12-H, 13-H und 14-H sowie die der 1,3-Dithiangruppen sind uncharakteristisch und erscheinen im Spektrum jeweils als Multipletts mit unwesentlichen Verschiebungsdifferenzen (.,s" = Pseudosingulett, .,t" = Pseudotriplett)

Nr.	88	Ba	15	15a	16	16a	17	17a	18	18a
Proton										
2H _{ax}	d2.2 d	11.91	d2.19	d1.87	d2.18	d1.84	d2.24	d1.90	d1.94	d1.7
∆ð	+0.29		+0.32	2	+0.34		+0.34		+0.24	
9H _{ax}	d2.44 d	12.14	d2.41	d2.1	d2.41	d2.17	d2.46	d2.15	d2.4	d2.17
∆٥	+0.3		+0.31		+0.24		+0.31		+0.23	
2-H _{ea}	d3.4 d	13.06	d3.4	d3.03	d3.74	d3.4	d3.48	d3.13	d4.71	d4.55
∆٥	+0.34		+0.37	,	+0.34	4	+0.35	5	+0.16	
9-Heg	d3.35 d	d2.98	d3.27	d2.95	d3.33	d3.0	d3.33	d3.04	d3.33	d3.02
Δ٥	+0.37		+0.32	2	+0.33		+0.29		+0.31	
8H	's'4.03 '	s'2.25	's`4.02	's'2.45	d4.1	d2.1	's'4.17	's'2.47	d4.2	d2.25
Δδ	+1.78		+1.57	,	+2.0		+1.7		+1.95	
16-H	's'5.85	s'6.68	's'5.87	's'6.63	't `5 .85	's'6.65	's'5.88	' s'6.6 5	m5.7	m6.58
_∆∂	-0.83		-0.76		0.8		-0.77		-0.8	8
4,5,6-H	m7.15 i	m5.3	-	_	-	-	_	-	-	-
4,6-H	-	-	d7.28	's'5.31	-	-	d7.79	's'6.09	-	-
	-	-	d7.30	's'5.37	-	-	-	-	-	-
5-H	-	-	-	-	d7.37	d5.11	-	-	d7.71	d6.01
Δδ	-	-	-	-	+2.2	6	-	-	+1.71	L .
6H	-	-		-	dd7.17	dd5.52	-	-	dd7.21	dd5.3
Δδ	-	-			+1.65				+1.91	
OMe	s3.21	s3.27	s3.26	s3.28	s2.98	s3.12	s3.21	s3.26	s3.0	s3.13
OMe SiMen	s5.47	sJ.51 -	s3.41 s0.2	s3.49 s0.3	s3.6 s0.4	ຣວ.ວວ s0.4	53.49 –	s3.5 -	s -	s).55 -
OCH2	-	-	_	-	-	-	q4.3 t1.38	q4.3 t1.39	m4.3 t1.4	q4.37 t1.4
6-H Δδ ΟMe SīMe ₃ OCH ₂ CH ₃	- - s3.21 s3.47 - -	- s3.27 s3.51 - -	 s3.26 s3.41 s0.2 	- s3.28 s3.49 s0.3 -	+2.20 dd7.17 +1.65 s2.98 s3.6 s0.4 - -	dd5.52 5 s3.12 s3.55 s0.4 	- - s3.21 s3.49 - q4.3 t1.38	- s3.26 s3.5 q4.3 t1.39	dd7.21 +1.91 s3.0 s3.5 - m4.3 t1.4	dd5 s3. s3. q4. t1.4

schen Verschiebungen der Protonen in 16 liegen in erwarteten Bereichen, abgeschen von dem um $\Delta \delta = 0.34$ ppm tieffeldverschobenen Signal des Protons 2-H_{eq} verglichen mit dem des 5-Regioisomeren 15 (vgl. Tab. 3). Dies könnte auf eine sterisch abstoßende Wechselwirkung mit der großen Trimethylsilylgruppe hinweisen.

Beim [2.2]Metacyclophan 18 fällt die beträchtliche Tieffeldverschiebung eines Brückenprotons von $\Delta \delta = 1.2$ ppm und die Hochfeldverschiebung von $\Delta \delta = 0.35$ seines geminalen Kopplungspartners auf, verglichen mit den Werten des 5-Regioisomeren 17 (vgl. Tab. 3). Erklärbar ist dies dadurch, daß sich das eine Brückenproton in dem entschirmenden, das andere in dem abschirmenden Anisotropiekegel der Estercarbonyl-Gruppe befindet. Prüft man die Geometrie von [2.2]Metacyclophan, so erkennt man, daß die Protonen 4-H und 6-H zu den äquatorialen bzw. Proton 8-H zu den axialen Brückenprotonen an C-2 und C-9 nahezu synperiplanar stehen²⁸⁾.

Durch hochaufgelöste ¹H,¹H-Korrelation und NOE-Differenz-Messungen an 16 und 18 konnten die Signale der Brückenprotonen identifiziert werden; die Zuordnung bei den übrigen [2.2]Phanen wurde danach vorgenommen. Die Zuordnung der ¹H-NMR-Signale von 4-H und 6-H in 15 und 15a bzw. 17 und 17a gelang bisher nicht (vgl. Tab. 3).

Das ¹H-NMR-Spektrum von 18 weist eine weitere Besonderheit auf: Die Ester-Methylenprotonen befinden sich in einer chiralen Umgebung und ihre Signale sind aufgrund der Diastereotopie entsprechend aufgespalten. Dagegen liegt beim 5-Regioisomeren 17 nur ein CH₂-Quartett vor, was auf die größere Entfernung zur chiralen Umgebung zurückgehen kann.

Die Kombination zweier Einflüsse macht [2.2]Metacyclophan-Chromtricarbonyl-Komplexe zu interessanten Untersuchungsobjekten für die NMR-Spektroskopie:

Tab. 4. ¹³C-NMR-Daten der achiralen Derivate von **6** (200 MHz, CDCl₃)

C-Atom Nr.	6	6a	11	11a	13	13a
C-1/C-10	62.9	62.4	62.8	62.4	62.6	62.1
C-2/C-9	53.3	50.8	53.5	51.0	53.2	50.6
C-3/C-7	131.7	104.7	131.0	103.1	131.8	96.9
C-4/C-6	129.5	95.7	134.4	101.6	130.4	102.2
C-5	125.6	85.7	137.6	93.1	128.0	84.2
C-8	136.2	94.5	136.5	95.6	140.3	94.4
C-11/C-15	139.3	138.3	139.4	139.3	139.4	139.3
C-12/C-14	127.6	128.4	127.6	128.3	127.8	128.4
C-13	130.0	131.6	129.7	131.3	130.4	131.7
C-16	135.4	136.6	135.5	136.7	135.1	136.5
Cr(CO)3	-	233.2	-	233.5	-	231.0
SiMez	-	-	-1.1	-1.1	—	
Ester-CO	-	-	-	-	166.6	165.7
OCH2	-	-	-	-	60.9	61.9
CH3		-	-	-	14.3	14.3

Tab. 5. IR-Daten (KBr) der Komplexe und der Chromtricarbonylfreien Ester 16 und 18 [\tilde{v} in cm⁻¹]

Subst. Nr.	6a	8 a	11a	1 3 a	1 5 a	16a	17	17a	18	1 8 a
Cr(CO)3	1961	1963	1959	1975	1958	1952	-	1971	_	1965
_	1862	1871	1872	1889	1882	1866	-	1881	-	1874
CO2CH2CH3	-	-	-	1716	-	-	1709	1719	1719	1720

1) Die inneren Protonen an den Kohlenstoffatomen C-8 und C-16 befinden sich im diamagnetischen Abschirmungsbereich des jeweils gegenüberliegenden Benzolrings, was zu einer deutlichen Hochfeldverschiebung von $\Delta\delta \approx 3$ ppm führt³⁾.

2) Die Chromtricarbonyl-Gruppe vermindert den Ringstromeffekt des komplexierten Benzolrings, was eine Hochfeldverschiebung der Signale der Aryl-Protonen um $\Delta\delta \approx 2$ und der Benzyl-Protonen um $\Delta\delta \approx 0.3$ ppm zur Folge hat²⁹⁾ (vgl. Tab. 2 und 3); die ¹³C-NMR-Spektren zeigen eine Hochfeldverschiebung der Signale der Aryl-C-Atome um $\Delta\delta = 30-40$ und der Benzyl-C-Atome um $\Delta\delta = 1-2$ ppm²⁹⁾, verglichen mit den Chromtricarbonyl-freien [2.2]Phanen (vgl. Tab. 4).

Für das "aromatische" Proton 8-H findet man in den Komplexen die bemerkenswerte chemische Verschiebung von $\delta = 2.1 - 2.5^{30}$, die vermutlich auf beide Effekte zurückzuführen ist. Da das Proton 16-H durch den gegenüberliegenden komplexierten Benzolring einem geringeren Ringstrom ausgesetzt ist, liegt seine Absorptionsfrequenz wieder im "normalen" Aromatenbereich (vgl. Tab. 2 und 3).

Abb. 1. Kristallstruktur von 11 a; a) Seitenansicht, b) zur Konformation der Chromtricarbonyl-Gruppe

D 1419

Die ¹³C-NMR-Spektren zeigen beim Vergleich zwischen dem Komplex und dem "freien" [2.2]Metacyclophan erheblich größere Verschiebungsunterschiede für die C-Atome 5 und 8. Die Ursache könnte darin zu suchen sein, daß die Chromtricarbonyl-Gruppe einen Einfluß auf die wannenförmige Deformation des komplexierten Benzolrings hat, der sich auf diese Positionen besonders stark auswirkt.

Die Tieffeldverschiebung der Signale der inneren Kohlenstoffatome C-8 und C-16 im Vergleich zu den äußeren (C-5 bzw. C-13) wird einer Abnahme der Elektronendichte an diesen Stellen in gespannten Molekülen zugeschrieben, die auf eine p-Orbital-Kompression zurückgeht³¹⁾.

Die IR-Spektren der Komplexe zeigen die erwartete Verschiebung der CO-Schwingungsfrequenz der Chromtricarbonyl-Gruppe. Die Esterfunktion zieht als π -Akzeptor Elektronendichte aus der Chromtricarbonyl-Gruppe ab und stärkt die Chrom-CO-Bindung, was zur Absorption bei höheren Wellenzahlen führt⁴⁾ (vgl. Tab. 5). Die Trimethylsilylgruppe hat als σ -Donor den entgegengesetzten Einfluß (vgl. Tab. 5). Interessant ist der Vergleich der Ester-CO-Schwingungsfrequenz im freien Liganden mit der im Komplex: Während sie sich in 18 und 18a nur unwesentlich unterscheiden, liegt sie in 17 deutlich tiefer als in 17a; entsprechend sind die Schwingungsfrequenzen der Chromtricarbonyl-Gruppe in 8a denjenigen in 18a ähnlicher als denen in 17a. Der offensichtlich schwächere Elektronenzug der Estergruppe in 18a könnte damit zusammenhängen, daß aufgrund der bevorzugten Konformation der Chromtricarbonyl-Gruppe (s.u.) die elektronische Wechselwirkung geringer ist als in 17a.

Röntgenstrukturuntersuchungen an [2.2]Metacyclophan-Chromtricarbonyl-Komplexen sind unseres Wissens erstmals kürzlich von Mitchell veröffentlicht worden³²⁾ (substituierte *syn-* und *anti-*[2.2]Metacyclophane). Wir konnten Einkristalle des Chromtricarbonyl-Komplexes **11a** herstellen. In der Elementarzelle dieses Komplexes findet man zwei voneinander unabhängige Moleküle (vgl. Abb. 3). (Im fol-

Abstände im Molekül1 (bzw. Molekül2) in 11a [pm]:

a = +2.1 (+1.6)	c = + 12.3 (+13.3)
a'= -5.3 (-4.3)	c' = -9.9 (-10.8)
b = -20.0 (-17.1)	d = -41.5 (-42.7)
	a = +40.8 (+39.7)

Winkel im Molekül1 (Molekül2) in 11a [Grad]:

$$\alpha = 10.1 (11.0)$$
 $\beta = 1.7 (1.3)$ $\gamma = 8.4 (9.1)$
 $\delta = 4.5 (3.7)$

Abb. 2. Zur wannenförmigen Deformation der Benzolringe in 11a

genden sind die Werte des Moleküls 1 zuerst genannt, die des Moleküls 2 dahinter in Klammern.)

Aufgrund der starren Geometrie des [2.2]Metacyclophan-Gerüsts treten Unterschiede zu "herkömmlichen" flexiblen Molekülen auf. In der 1,3-Dithiangruppe von 11a sind die Bindungsabstände ähnlich wie in 2-Phenyl-1,3-dithian, der S(1) - C(1) - S(2)-Winkel im [2.2]Phan 11a ist jedoch um 5.2° (bzw. 5.5°) kleiner als in 2-Phenyl-1,3-dithian¹⁾ und entspricht mit 109.8° (bzw. 109.5°) nahezu dem idealen Tetraederwinkel.

Abb. 3. Röntgenstruktur von 11 a, Moleküle 1 (oben) und 2 (unten)

Die Benzolringebenen in 11a sind nicht wie in [2.2]-Metacyclophan (10) parallel zueinander angeordnet ^{33a)}, sondern schließen einen Winkel von 3.9° (bzw. 4.3°) ein. Da die relevanten Bindungswinkel an den schwefeltragenden Atomen C-1 und C-10 nahezu den idealen Tetraederwinkeln entsprechen, rührt die geringe Abwinkelung des Benzolrings A wahrscheinlich von der sterischen Abstoßung der annähernd synperiplanar zueinander stehenden äquatorialen Schwefelatome S-2 bzw. S-3 mit den H-Atomen 14-H bzw. 12-H her (vgl. Abb. 1a).

Die räumliche Nähe zu den Schwefelatomen drückt sich auch in der Tieffeldverschiebung der Signale dieser Protonen im ¹H-NMR-Spektrum aus²⁸⁾ (vgl. Tab. 2).

Planare Benzolringe in [2.2]Metacyclophanen würden zu anomal kurzen Abständen von nicht direkt miteinander verbundenen Kohlenstoffatomen führen, z.B. 156 pm für den Abstand C-8/C-16 in 10^{33a,b)}. Das Molekülgerüst "antwortet" diesem sterischen Druck mit einer Abwinkelung von C-8 (bzw. C-16) aus der Benzolringebene; dies zieht eine kleinere gleichsinnige Abwinkelung von C-5 (bzw. C-13) und eine große gegensinnige der Brückenatome C-2 und C-9 (bzw. C-1 und C-10) nach sich (vgl. Abb. 1a und Abb. 2). Als Folge davon werden beide Benzolringe wannenförmig deformiert, und der Abstand zwischen C-8 und C-16 wird um ca. 100 pm vergrößert; in 11a beträgt er 262.6 pm (bzw. 263.6 pm) und in 10 268.9 pm^{33a,b)}. Die Winkeldeformationen von sp²-hybridisierten Kohlenstoffatomen finden einen weiteren starken Ausdruck in der Lage der Trimethylsilylgruppe in 11 a (vgl. Abb. 2). Die Bindungsabstände entsprechen normalen Werten.

Die Konformation der Chromtricarbonyl-Gruppe ist gestaffelt hinsichtlich der Substituenten, d. h. ekliptisch zu den Atomen C-4, C-6 und C-8 (vgl. Abb. 1b). NMR-spektroskopische Untersuchungen an Komplexen von 2,11-Dithia-[3.3]metacyclophan, [2.2]Metacyclophan (10) sowie 1,3-Dimethylbenzol zeigen, daß die Chromtricarbonyl-Gruppe bevorzugt ekliptisch zu den Substituenten steht²⁹). Dieser Befund könnte auf Packungseffekte im Kristall oder auf den voluminösen Trimethylsilyl-Rest zurückzuführen sein.

Der Abstand des Chrom-Atoms zum Zentrum der Ebene B in 11a beträgt 176.5 pm (bzw. 176.9 pm); in (Benzol)tricarbonylchrom ist er kürzer (170 pm)³⁴.

Wir danken der Stiftung Volkswagenwerk für die Unterstützung dieser Arbeit. Prof. M. Jansen und Dr. J. Arlt sei für die IR-Spektren gedankt. Herrn C. Schmidt sind wir für die Aufnahme der NMR-Spektren, Herrn Dr. G. Eckhardt für die Massenspektren und Herrn Dr. P. Knops für Ratschläge zu Dank verpflichtet.

Experimenteller Teil

¹H-NMR: Bruker WH-200 (200 MHz) und WH-400 (400 MHz). - ¹³C-NMR: WH-200 (50.32 MHz). – Schmp.: Kofler-Mikroskop-Heiztisch. – MS: MS-30 und MS-50 A. E. I. – Dünnschichtchromatographie: DC-Alufolien, Kieselgel 60 F₂₅₄ (Merck). – Säulenchromatographie: Kieselgel (63–100 µm) (Merck). – IR: Bruker IFS 113 v. – Gasreinigung: Oxisorb (Krämer & Martin).

Vorbereitungen: Die verwendeten Apparaturen wurden gründlich ausgeheizt und mit sauerstoffreiem Argon unter Normaldruck gesetzt. Das THF wird über Natrium/Benzophenon destilliert und im Ultraschallbad entgast. Komplexierung, Derivatisierung und anschließende säulenchromatographische Trennung werden unter Lichtausschluß durchgeführt.

Allgemeines Verfahren zur Komplexierung: 2 mmol des [2.2]-Metacyclophans werden im Argongegenstrom in einen Kolben mit Gaseinlaß, Rückflußkühler und Gasauslaß gegeben und in 80 ml THF gelöst. Dann gibt man 2 mmol Triammintricarbonylchrom hinzu und erhitzt auf dem Wasserbad 3.5 h unter Rückfluß. Nach jeweils 1 h wird ein Argonstrom durch die Apparatur geleitet. Man läßt auf Raumtemp. abkühlen, verdampft das THF und chromatographiert den Rückstand an Kieselgel. Allgemeines Verfahren zur Lithiierung und elektrophilen Substitution: 0.5 mmol des Komplexes werden in einem Kolben mit Septum, Argongaseinlaß und Gasauslaß in 10 ml THF gelöst, und die gelbe Lösung wird auf -78 °C gekühlt. Durch das Septum spritzt man nun zuerst 1.5 mmol N, N, N', N'-Tetramethylethylendiamin (TMEDA) und anschließend 1.5 mmol *n*BuLi (1.6 M in *n*-Hexan). Nach 3-4 h hat sich die Lösung rotbraun gefärbt. Man gibt nun 1.5 mmol des Elektrophils durch das Septum hinzu, rührt noch 1 h und läßt auf Raumtemp. erwärmen. Das THF wird verdampft und der Rückstand an Kieselgel chromatographiert. Die Komplexe wie auch die Edukt-Komplexe lassen sich in Methanol/Petrolether 50-70 °C (1:1, v/v) bei -50 °C auskristallisieren. Es sind gelbe oder orangefarbene licht- und luftempfindliche Kristalle, die sich auf der Heizbank zersetzen.

Dekomplexierung: Die Komplexe werden mit Pyridin versetzt, und die Mischung wird 15 min unter Rückfluß erhitzt. Das Pyridin wird im Wasserstrahlvak. entfernt und der zurückbleibende Feststoff umkristallisiert.

Tricarbonyl {dispiro[1,3-dithian-2,1'-[2.2]metacyclophan-10',2"-[1,3]dithian]-(B) }-anti-chrom (**6a**)³⁶: Aus 833 mg (2.0 mmol) **6** und 378 mg (2.0 mmol) Triammintricarbonylchrom, Ausb. 320 mg (29%), $R_{\rm f} = 0.36$ [CH₂Cl₂/Cyclohexan (1:1)]. - MS (70 eV): *m/z* (%) = 552 [M⁺] (20), 496 [M - 2 CO] (40), 468 [M - 3 CO] (50).

Ring-B-anti-Tricarbonylchrom-Komplex 11a: Aus 276 mg (0.5 mmol) 6a, 0.22 ml (1.5 mmol) TMEDA, 0.94 ml (1.5 mmol) *n*BuLi und 0.19 ml (1.5 mmol) Chlortrimethylsilan; Ausb. 200 mg (64%), $R_{\rm f} = 0.47$ [CH₂Cl₂/Cyclohexan (1:1)]. - MS (70 eV): *m/z* (%) = 624.0409 [M⁺] (6.1), ber. 624.0409, 540 [M - 3 CO] (15), 488 [M - 3 CO, - Cr] (20).

Ring-B-anti-Tricarbonylchrom-Komplex **13a**: Aus 276 mg (0.5 mmol) **6a**, 0.22 ml (1.5 mmol) TMEDA, 0.94 ml (1.5 mmol) *n*BuLi und 0.14 ml (1.5 mmol) Chlorameisensäurc-ethylester; Ausb. 215 mg (69%), $R_f = 0.42$ [CH₂Cl₂/Cyclohexan (2:1)]. – MS (70 eV): m/z (%) = 624.0227 [M⁺] (21.0), ber. 624.0225, 540 [M – 3 CO] (95), 488 [M – 3 CO, – Cr] (40).

Ring-B-anti-Tricarbonylchrom-Komplex **8a**: Aus 745 mg (2.0 mmol) **8** und 378 mg (2.0 mmol) Triammintricarbonylchrom; Ausb. 356 mg (35%), $R_{\rm f} = 0.33$ [CH₂Cl₂/Cyclohexan (1:1)]. – MS (70 eV): m/z (%) = 508.0464 [M⁺] (33.4), ber. 508.0470, 452 [M – 2 CO] (50), 424 [M – 3 CO] (35), 372 [M – 3 × CO, – Cr] (35). – ¹³C-NMR (50.32 MHz, CDCl₃): δ = 25.3, 26.9 und 28.2 [S(CH₂)₃S], 44.8 [C-2], 50.8 [C-9], 62.5 [C-10], 107.9 [C-1], 49.6 [2 OCH₃], 86.8, 84.9, 95.3 und 95.5 [4 Aryl-CH], 105.4 und 106.6 [2 Aryl-C], 127.3, 128.3, 130.0 und 135.6 [4 Aryl-CH], 137.8 und 138.0 [2 Aryl-C] 233.6 [Cr(CO)₃].

C₂₄H₂₄CrO₅S₂ (508.6) Ber. C 56.68 H 4.76 Gef. C 56.03 H 4.75

Ring-B-anti-Tricarbonylchrom-Komplex **15a**: Aus 254 mg (0.5 mmol) **8a**, 0.22 ml (1.5 mmol) TMEDA, 0.94 ml (1.5 mmol) *n*BuLi und 0.19 ml (1.5 mmol) Chlortrimethylsilan; Ausb. 117 mg (46%), $R_{\rm f} = 0.45$ [CH₂Cl₂/Cyclohexan (1:1)]. - MS (70 eV): *m/z* (%) = 580.0860 [M⁺] (11.3), ber. 580.0866, 524 [M - 2 CO] (15), 496 [M - 3 CO] (20), 444 [M - 3 CO, - Cr] (20).

C₂₇H₃₂CrO₅S₂Si (580.7) Ber. C 55.84 H 5.55 Gef. C 56.02 H 5.57

Ring-B-anti-Tricarbonylchrom-Komplex **16a**: Aus 254 mg (0.5 mmol) **8a**, 0.22 ml (1.5 mmol) TMEDA, 0.94 ml (1.5 mmol) *n*BuLi und 0.19 ml (1.5 mmol) Chlortrimethylsilan; Ausb. 41 mg (16%), $R_{\rm f} = 0.59$ [CH₂Cl₂/Cyclohexan (1:1)]. – MS (70 eV): m/z (%) =

В 1421

Ring-B-anti-Tricarbonylchrom-Komplex 17a: Aus 254 mg (0.5 mmol) **8a**, 0.22 ml (1.5 mmol) TMEDA, 0.94 ml (1.5 mmol) *n*BuLi und 0.14 ml (1.5 mmol) Chlorameisensäure-ethylester; Ausb. 157 mg (54%), $R_f = 0.4$ [CH₂Cl₂/Cyclohexan (2:1)]. – MS (70 eV): m/z (%) = 580.0699 [M⁺] (2.9), ber. 580.0682, 496 [M – 3 CO] (100), 444 [M – 3 CO, – Cr] (15).

 $\begin{array}{rl} C_{27}H_{28}CrO_7S_2 \ (580.6) & \mbox{Ber. C} \ 55.85 \ H \ 4.86 \\ & \mbox{Gef. C} \ 55.93 \ H \ 4.93 \end{array}$

Ring-B-anti-Tricarbonylchrom-Komplex **18a**: Aus 254 mg (0.5 mmol) **8a**, 0.22 ml (1.5 mmol) TMEDA, 0.94 ml (1.5 mmol) *n*BuLi und 0.14 ml (1.5 mmol) Chlorameisensäure-cthylester; Ausb. 49 mg (17%), $R_{\rm f} = 0.49$ [CH₂Cl₂/Cyclohexan (2:1)]. – MS (70 eV): *m/z* (%) = 580.0675 [M⁺] (7.9), ber. 580.0682, 496 [M – 3 CO] (70), 444 [M – 3 CO, – Cr] (15).

5-Trimethylsilyl-Derivat 11: Aus 200 mg (0.32 mmol) 11a und 20 ml Pyridin; Ausb. 148 mg (95%), Schmp. 137 – 138 °C (Ethanol). – MS (70 eV): m/z (%) = 488 [M⁺] (25), 415 [M – SiMe₃] (100). C₂₅H₃₂S₄Si (488.8) Ber. C 61.42 H 6.60 Gef. C 60.88 H 6.55

5-Carbonsäure-ethylester 13: Ausb. 215 mg (0.34 mmol) 13a und 20 ml Pyridin; Ausb. 160 mg (95%), Schmp. $233-235^{\circ}$ C (Methanol). – MS (70 cV): m/z (%) = 488.0965 [M⁺] (38.7), ber. 488.0917.

Dimethylacetal 15: Aus 117 mg (0.2 mmol) 15a und 15 ml Pyridin; Ausb. 83.5 mg (94%), Schmp. 133–135°C (Methanol). – MS (70 eV): m/z (%) = 444.1616 [M⁺] (10.9), ber. 444.1613. – ¹³C-NMR (50.32 MHz, CDCl₃): δ = –1.0 (SiMe₃), 25.7, 27.3 und 28.2 [S(CH₂)₃S], 46.2 (C-2); 49.0 und 50.0 (2 OCH₃), 53.7 (C-9), 63.1 (C-10), 107.4 (C-1), 125.9, 127.5, 128.9, 133.7, 133.8, 135.1 und 136.8 (7 Aryl-CH), 131.1, 133.5, 137.7, 138.2 und 138.7 (5 Aryl-C).

Dimethylacetal 16: Aus 41 mg (7.0 mmol) 16a und 10 ml Pyridin; Ausb. 30 mg (95%), Schmp. 158-160 °C (Methanol). – MS (70 eV): m/z (%) = 444 [M⁺] (10).

Dimethylacetal 17: Aus 157 mg (0.27 mmol) 17a und 20 ml Pyridin; Ausb. 117 mg (97%), Schmp. 204–206°C (Methanol). – MS (70 eV): m/z (%) = 444 (55). – ¹³C-NMR (200 MHz, CDCl₃): δ = 14.4 (CH₃), 25.6, 27.1 und 28.3 [S(CH₂)₃S], 46.7 (C-2), 49.3 und 49.9 (2 OCH₃), 53.4 (C-9), 60.9 (OCH₂), 63.0 (C-10), 107.1 (C-1), 126.4, 127.8, 129.6, 129.7, 130.2, 134.8 und 140.6 (7 Aryl-CH), 128.5, 131.9, 134.3, 138.2 und 138.6 (5 Aryl-C), 167.0 (C=O).

 $C_{24}H_{28}O_4S_2$ (444.6) Ber. C 64.84 H 6.35 Gef. C 64.97 H 6.58

Dimethylacetal **18**: Aus 49 mg (8.5 mmol) **18a** und 10 ml Pyridin; Ausb. 35.5 mg (95%), Schmp. 150–152°C (Methanol). – MS (70 eV): m/z (%) = 444 [M⁺] (65). – ¹³C-NMR (50.32 MHz, CDCl₃): δ = 14.5 (CH₃), 25.9, 27.5 und 28.7 [S(CH₂)₃S], 44.2 (C-2), 49.4 und 49.8 (2 OCH₃), 53.3 (C-9), 61.1 (OCH₂), 63.1 (C-10), 107.6 (C-1), 126.9, 127.5, 128.8, 129.9, 133.3 und 138.8 (7 Aryl-CH), 132.0, 135.4, 136.1, 138.1 und 138.2 (5 Aryl-C), 168.1 (C=O).

 $C_{24}H_{28}O_4S_2\ (444.6)$ Ber. C 64.84 H 6.35 Gef. C 64.78 H 6.55

Dimethylacetal 9 von 1-Oxo[2.2]metacyclophan: In einem Einhalskolben werden 95 g Natriumhydroxid in 375 ml Wasser gelöst. Die Lösung wird auf 0 °C gekühlt. Unter starkem Rühren gibt man 75 g Nickel-Aluminium-Legierung in kleinen Portionen so zu, daß die Temperatur nicht über 25 °C steigt. Man läßt stehen, bis die Wasserstoff-Entwicklung weniger heftig geworden ist und erhitzt die Suspension 8-10 h auf 60 °C. Es wird dekantiert und der Ka-

talysator in einer Lösung aus 12.5 g Natriumhydroxid in 125 ml Wasser suspendiert. Die alkalische Lösung wird dekantiert und der Katalysator so oft gewaschen, bis das Waschwasser neutral reagiert. Man wäscht weitere dreimal mit Wasser, dreimal mit destillicrtem Ethanol und dreimal mit wasserfreiem Ethanol. Das Ethanol wird nun dekantiert, und 4.0 g (10.8 mmol) des Dimethylacetals 8 und 80 ml wasserfreies Ethanol werden zugesetzt. Die Reaktionsmischung wird 6 h unter Rückfluß erhitzt und anschließend heiß filtriert. Der Filterrückstand wird noch fünfmal mit je 100 ml heißem Ethanol gewaschen (man achte darauf, daß das Raney-Nickel ständig feucht bleibt). Die vereinigten Filtrate werden im Wasserstrahlvak. zur Trockne eingeengt, und der Rückstand wird aus n-Hexan umkristallisiert; Ausb. 1.3 g (45%), Schmp. 107-108°C (n-Hexan). - MS (70 eV): m/z (%) = 268.1466 [M⁺] (8.0), ber. 268.1463, 119 (100). - ¹H-NMR (CDCl₃, 90 MHz): $\delta = 2.0 - 2.1$ (m, 2H, CH₂), 2.2 (d, 1H, 2-H_{ax}), 3.05-3.15 (m, 2H, CH₂), 3.17 (s, 3H, OCH₃), 3.48 (d, 1H, 2-H_{eq}), 3.54 (s, 3H, OCH₃), 4.21 (s, 1H, 8-H), 4.7 ("s", 1H, 16-H)³⁷⁾, 7.05–7.45 (m, 6H, Aryl-H). – ¹³C-NMR (200 MHz, CDCl₃): δ = 40.6 und 41.1 (C-9 und C-10), 47.0 (C-2), 49.4 und 49.5 (2 OCH₃), 107.6 (C-1), 126.0, 127.5, 127.8, 128.0, 128.7, 134.8, 135.1 und 136.7 (8 Aryl-CH), 124.6, 136.7, 138.4 und 138.5 (4 Aryl-C).

Dimethylacetal **9a** von Tricarbonyl (1-oxo[2.2]metacyclophan)chrom: Aus 536 mg (2.0 mmol) **9** und 378 mg Triammintricarbonylchrom, Ausb. 323 mg (40%), $R_f = 0.4$ [CH₂Cl₂/Cyclohexan (1:1)]. – IR (KBr): \tilde{v} [cm⁻¹] = 1960, 1888, 1858. – MS (70 eV): m/z (%) = 404.0714 [M⁺] (9.1), ber. 404.0716, 348 [M – 2 CO] (10), 320 [M – 3 CO] (10), 268 [M – 3 CO, – Cr] (10), 119 (100). – ¹H-NMR (CDCl₃, 200 MHz): $\delta = 1.85 - 1.94$ (m, 2H, 2-H_{ax}, und CH₂), 2.2–2.4 (m, 2H, 8-H und CH₂), 2.7–2.85 (m, 1H, CH₂), 3.1 (d, 1 H, 2-H_{eq}), 3.18–3.35 (m, 5H, CH₂ und CH₃), 5.12 bis 5.25 (m, 2H, Aryl-H), 5.65 ("s", 1H, 16-H), 7.1–7.2 (m, 1H, Aryl-H), 7.35–7.45 (m, 2H, Aryl-H). – ¹³C-NMR (50.32 MHz, CDCl₃): $\delta = 38.6$ und 40.3 (C-9 und -10), 45.1 (C-2), 49.5 (2 OCH₃), 106.7 (C-1), 88.9, 92.3, 94.7 und 95.1 (4 Aryl-CH), 109.4 und 112.8 (2 Aryl-C), 125.6, 128.3, 130.4 und 136.4 (4 Aryl-CH), 136.3 (2 Aryl-C), 234.1 [Cr(CO)₃].

Kristallstrukturanalyse von 11a: Die Bestimmung der Gitterkonstanten und Messung der Reflexintensitäten des aus CDCl₃ gezüchteten Kristalls erfolgten auf einem Nicolet-R3m-Diffraktometer mit Graphit-monochromatisierter Mo- K_{α} -Strahlung ($\lambda =$ 71.073 pm), ω -Scan. Die Nicht-Wasserstoffatome wurden anisotrop verfeinert ("full matrix least squares"), H-Atome, durch Differenzelektronen-Dichtebestimmung lokalisiert und mit einem "riding"-Modell verfeinert. Alle Strukturlösungen und Verfeinerungen wurden mit dem Programm SHELXTL-Plus durchgeführt³⁵⁾.

Kristalldaten: C₂₈H₃₂CrO₃S₄Si, gelbe Prismen, Einkristallgröße 0.6 × 0.6 × 0.6 [mm], triklin $P\bar{1}$ (No. 2), $M = 624.9 \text{ gmol}^{-1}$; a = 1093.4(1), b = 1615.8(2), c = 1803.7(3) pm; $\alpha = 91.27(1)^{\circ}$, $\beta = 95.04(1)^{\circ}$, $\gamma = 106.87(1)^{\circ}$; V = 3.0339(7) nm³; Z = 4; $d_x = 1.368$ mg/m³; μ (Mo- K_{α}) = 0.698 mm⁻¹.

Strukturverfeinerung: Von 14902 gemcssenen Reflexen (Index-Bereich: $-12 \le h \le 12$, $-19 \le k \le 19$, $0 \le l \le 21$) sind 10590 symmetrieunabhängig ($2\Theta_{max} = 50.0^{\circ}$), davon wurden 8396 Reflexc mit $F > 4\sigma(F)$ verwendet; 667 verfeinerte Parameter, R = 0.043 ($R_w = 0.047$; $w^{-1} = \sigma^2(F) + 0.0005 F^2$).

Weitere Daten zur Röntgen-Kristallstruktur können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55044 erfragt werden.

<u>Molekül 1</u> :					Molekül	<u>2</u> :			
Atom-Nr.	x	У	z	U(eq)	Atom-Nr	. x	Y	z	U(eq)
Cr(1)	2665(1)	7648(1)	1218(1)	36(1)	Cr(1')	2677(1)	2655(1)	4059(1)	38(1)
Si(1)	1888(1)	9786(1)	1147(1)	46(1)	(۱۱) si	1943(1)	4797(1)	4146(1)	44(1)
s(1)	-1526(1)	7541(1)	-485(1)	44(1)	s(1')	-1705(1)	851(1)	6056(1)	51(1)
S(2)	-1735(1)	5866(1)	-1302(1)	47(1)	S(2`)	-1475(1)	2537(1)	5343(1)	46(1)
S(3)	-1943(1)	6102(1)	3161(1)	51(1)	s(3`)	-1995(1)	1123(1)	1584(1)	57(1)
S(4)	-1510(1)	7710(1)	2304(1)	44(1)	S(4`)	-1573(1)	2715(1)	2565(1)	51(1)
C(1)	-1235(3)	6485(2)	-410(2)	37(1)	(ניו)	-12300(3)	1475(2)	5244(2)	38(1)
C(2)	270(3)	6649(2)	-301(2)	39(1)	C(2`)	301(3)	1641(2)	5290(2)	41(1)
C(3)	835(3)	7160(2)	426(2)	36(1)	C(3`)	850(3)	2154(2)	4642(2)	37(1)
C(4)	1269(3)	8073(2)	462(2)	37(1)	C(4')	1288(3)	3073(2)	4694(2)	38(1)
C(5)	1507(3)	8572(2)	1139(2)	36(1)	C(5')	1522(3)	3584(2)	4064(2)	37(1)
C(6)	1248(3)	8117(2)	1799(2)	38(1)	C(6')	1252(3)	3129(2)	3357(2)	40(1)
C(7)	805(3)	7204(2)	1789(2)	37(1)	(י)	797(3)	2221(2)	3275(2)	40(1)
C(8)	716(3)	6731(2)	1102(2)	36(1)	C(8))	727(3)	1742(2)	3932(2)	38(1)
C(9)	183(3)	6748(2)	2442(2)	41(1)	C(9`)	151(3)	1769(2)	2540(2)	46(1)
C(10)	-1316(3)	6623(2)	2323(2)	38(1)	C(10')	-1341(3)	1635(2)	2509(2)	43(1)
C(11)	-1877(3)	6064(2)	1604(2)	37(1)	(יוו)ס	-1881(3)	1069(2)	3146(2)	40(1)
C(12)	-2221(3)	5158(2)	1595(2)	51(1)	C(12')	-2119(3)	169(2)	3081(2)	54(1)
C(13)	-2424(3)	4685(2)	926(2)	58(1)	C(13')	-2403(4)	-312(2)	3710(2)	59(1)
C(14)	-2188(3)	5095(2)	258(2)	48(1)	C(14')	-2169(3)	86(2)	4414(2)	51(1)
C(15)	-1837(3)	5993(2)	253(2)	37(1)	C(15')	-1814(3)	988(2)	4496(2)	37(1)
C(16)	-1781(2)	6459(2)	922(2)	35(1)	C(16')	-1780(3)	1460(2)	3858(2)	36(1)
C(17)	-3260(3)	7185(2)	-684(2)	56(1)	(י01)	-3406(3)	778(3)	5971(2)	61(1)
C(18)	-3725(4)	6648(3)	-1408(2)	64(2)	C(18')	-3666(4)	1650(3)	6003(3)	73(2)
C(19)	-3432(3)	5786(2)	-1402(2)	57(1)	C(19')	-3205(3)	2201(3)	5352(3)	65(2)
C(20)	-3602(3)	6099(3)	3000(2)	59(1)	C(20')	-3671(3)	1077(3)	1608(2)	69(2)
C(21)	-3789(3)	6982(3)	2931(2)	63(2)	C(21')	-3906(4)	1951(3)	1710(3)	74(2)
C(22)	-3243(3)	7443(3)	2257(2)	55(1)	C(22')	-3316(3)	2420(3)	2451(2)	66(2)
C(23)	296(4)	9981(3)	1036(3)	73(2)	C(23')	2907(4)	5293(3)	3384(2)	80(2)
C(24)	2722(4)	10289(3)	2058(2)	68(2)	C(24')	364(4)	5020(3)	4010(3)	75(2)
C(25)	2856(4)	10184(2)	360(2)	67(2)	C(25')	2809(4)	5188(3)	5082(2)	64(2)
C(26)	3310(3)	6750(2)	1456(2)	60(1)	C(26')	3814(3)	2993(3)	4889(2)	54(1)
0(26)	3747(3)	6196(2)	1600(3)	108(2)	0(26')	4530(3)	3205(3)	5413(2)	93(2)
C(27)	3942(3)	8346(2)	1880(2)	54(1)	C(27')	3949(3)	3315(3)	3529(2)	56(1)
0(27)	4760(3)	8794(2)	2286(2)	89(1)	(י27י)	4777(3)	3724(2)	3217(2)	92(2)
C(28)	3809(4)	7899(3)	520(2)	79(2)	C(28')	3394(3)	1774(3)	3910(3)	68(2)
0(28)	4553(3)	8052(4)	93(2)	152(3)	0(28))	3917(3)	1259(2)	3835(3)	115(2)

Tab. 6. Atomkoordinaten (×10⁴) und äquivalente isotrope thermische Parameter (pm² × 10⁻¹); äquivalente isotrope U sind definiert als 1/3 der Spur des orthogonalen U_{ij} -Tensors

CAS-Registry-Nummern

6: 132562-50-6 / **6a**: 132491-52-2 / **8**: 132616-86-5 / **8a**: 132491-53-3 / **9**: 132491-45-3 / **9a**: 132491-54-4 / 11: 132491-46-4 / **11a**: 132491-55-5 / **13**: 132491-47-5 / **13a**: 132491-56-6 / **15**: 132491-48-6 / **15a**: 132491-57-7 / **16**: 132491-49-7 / **16a**: 132491-58-8 / **17**: 132491-50-0 / **17a**: 132491-59-9 / **18**: 132491-51-1 / **18a**: 132512-86-8 / **Tr**: mministrigenche nullehoum: 14074 **11** 0 86-8 / Triammintricarbonylchrom: 14974-11-9

¹⁾ ^{1a)} H. Lehner, Monatsh. Chem. **105** (1974) 895. - ^{1b)} C. Krieger, E. Langer, H. Lehner, Monatsh. Chem. **107** (1976) 19.
 ²⁾ ^{2a)} F. Vögtle, K. J. Przbilla, Chem. Ber. **122** (1989) 347. - ^{2b)} F. Vögtle, P. Ncumann, Angew. Chem. **84** (1972) 75; Angew. Chem. Int. Ed. Engl. **11** (1972) 73. - ^{2c)} F. Vögtle, P. Knops, A. Ostro-wicki, Chem. Ber. **123** (1990) 1859.
 ³¹ C. Glotzmann, E. Langer, H. Lehner, Monatsh. Chem. **105** (1974) 54

54.

1423

- ⁴⁾ E. Langer, H. Lehner, *Tetrahedron* 29 (1973) 375.
- ⁵⁾ H. Lehner, *Monatsh. Chem.* **107** (1976) 565. ⁶⁾ F. Vögtle, P. Neumann, *Synthesis* **1973**, 85.
- ⁷⁾ V. Bockelheide, J. B. Phillips, J. Am. Chem. Soc. 89 (1967) 1695.
- ⁸⁾ B. Kainradl, E. Langer, H. Lehner, K. Schlögl, Liebigs Ann. Chem. 766 (1972) 16.
- ⁹⁾ E. O. Fischer, K. Öfele, *Chem. Ber.* **90** (1957) 2532. ¹⁰⁾ H. W. Gschwend, J. Am. Chem. Soc. **94** (1972) 8430.

- ¹¹⁾ V. Boekelheide, T. Hylton, J. Am. Chem. Soc. 34 (1312) 6730. ¹²⁾ V. Boekelheide, T. Hylton, J. Am. Chem. Soc. 90 (1968) 6887. ¹²⁾ M. Nakazaki, Y. Hirose, T. Shimizu, T. Suzuki, A. Ishii, M. Makimura, J. Org. Chem. 45 (1980) 1428.

- ¹³ R. Mozingo, Org. Synth., Coll. Vol. 3, 181.
 ¹⁴ B. Nicholls, C. Whiting, J. Chem. Soc. 1959, 551.
 ¹⁵ M. D. Rausch, G. A. Moser, E. J. Zaiko, A. Lipmann Jr., J. Organomet. Chem. 23 (1970) 185.
 ¹⁶ M. D. Barret Lieux, Lieux Barret 1080.
- ¹⁶⁾ L. Radon, Dissertation, Univ. Bonn, 1989.
- ¹⁷⁾ E. Patsilides, S. J. Pratter, J. Organomet. Chem. 364 (1989) 169. ¹⁸⁾ G. Carganico, P. del Buttero, S. Maiorana, G. Riccardi, J. Chem. Soc., Chem. Commun. 1978, 989.
- ¹⁹ P. J. Beswick, S. J. Leach, N. F. Masters, D. A. Widdowson, J. Chem. Soc., Chem. Commun. 1984, 46.
- ²⁰⁾ R. Riemenschneider, O. Becker, K. Franz, Monatsh. Chem. 90 (1959) 571.
- ²¹⁾ Y. F. Oprunenko, S. G. Maliguna, Y. A. Ustyniuk, N. A. Usty-²¹ R. J. Card, Trahanovsky, J. Org. Chem. 45 (1980) 2556.
 ²³ P. J. Beswick, C. S. Greenwood, T. J. Molem, G. Nechvatal, D.
- A. Widdowson, Tetrahedron 44 (1988) 7325.

- ²⁴⁾ E. P. Kündig, N. P. Do Thi, P. Paglia, D. P. Simmons, G. Nechvatal, S. Spichiger, E. Wenger, Organometallics in Organic Synthesis, Bd. 1 (A. de Meijere, H. tomDiek, Hrsg.), S. 265, Springer, Berlin 1987.
- ²⁵⁾ K. Schlögl, Organometallics in Organic Synthesis, Bd. 2 (H. Wer-
- ²⁶⁾ M. Stöbbe, O. Reiser, T. Thiemann, R. G. Daniels, A. de Meijere, *Tetrahedron Lett.* 27 (1986) 2353.
- ²⁷⁾ P. J. Dicksons, J. P. Gilday, J. T. Negri, D. A. Widdowson, Pure Appl. Chem. 62 (1990) 575.
- ²⁸⁾ C. Glotzmann, E. Haslinger, E. Langer, H. Lehner, Monatsh. Chem. 106 (1975) 187. ²⁹⁾ R. H. Mitchell, T. K. Vinod, G. J. Bodwell, G. W. Bushnell, J.
- Org. Chem. 54 (1989) 5871

- ³⁰ E. Langer, H. Lehner, J. Organomet. Chem. **173** (1979) 47. ³¹⁾ T. Takemura, T. Sato, Can. J. Chem. **54** (1976) 3412. ³²⁾ R. H. Mitchell, T. K. Vinod, G. Bushnell, J. Am. Chem. Soc. **112**
- (1990) 3487.
 ³³⁾ 33al C. J. Brown, J. Chem. Soc. 1953, 3278. ^{3b)} Y. Kai, N. Yasuoka, N. Kasai, Acta Crystallogr., Sect. B, 33 (1977) 754.
 ³⁴⁾ J. T. Price, T. S. Sorensen, Can. J. Chem. 46 (1968) 515.
 ³⁵⁾ C. M. Chaldrick (1990). Signers Analytical X-ray Instruments.
- ³⁵⁾ G. M. Sheldrick (1989), Siemens Analytical X-ray Instruments Incorporation, Madison (Wisconsin), USA.
- ³⁶⁾ Zur Bezeichnungsweise siehe Schema 3; sie lehnt sich an Lit.⁸⁾
- ³⁷⁾ ^{an.} ^{Zur} Definition siehe Tab. 2 und 3.

[404/90]